| Revi | ζì+ σ | f C | Quawtum | Mechami | es Postu | lates | | | |------------------------|------------|-----------------|---------------------|------------------|------------------------------|------------------------|----------|-------| | Last
Way
Apparem | two of teo | lectures, ching | 2 was
pastulates | actually of guan | followin
utum meg
ell. | g stando
chanics, o | ard "ter | Howk" | | | | | | | | | | | | 7 bi | ke to | forlow | what | really hop | re Visit | history | beause | i÷ | explains why people came up with these postulates. History Routes: De Broglie proposed electron is wave, to some the hydrogen atom spectral problem. Postulate 1: System describe by a wavefunction. $\psi(x,t)$ $\frac{1}{\lambda} = R_0 \left(\frac{1}{n^2 - \frac{1}{m^2}} \right)$ Schordinger: Wave must sbey a wave-equation (SCF=ma) $Y = e^{ikxiwt}$, $PY = \frac{h}{i} \frac{\partial}{\partial x} e^{ikxiwt} \frac{h}{i} \frac{\partial}{\partial x} Y = hkY = jY$ Similarly, EY = it of eikx-ivt = twy = it of Y And: $$E = \frac{p^2}{2m} + V(x)$$ $$\left\{ \frac{\hat{p}^2}{2m} + V(\hat{x}) \right\} \mathcal{V}(x,t) = \frac{10}{8t} \mathcal{V}(x,t)$$ Summarire two postulate: Postulate 2: Wave equation sortisfies Schordinger equation Postulate 3: physics attribute (an operator. Now, Schordinger heeds to do something to show his equation is correct. So he tried to some the Schordinger eguntion for Hydrogen atom. His equation needs to be tested by experiment. $$\left\{\frac{1}{2m} - \frac{ke^2}{r}\right\} \gamma(\vec{x}, t) = i \frac{3}{3t} \gamma(\vec{x}, t)$$ $$\hat{p} = \frac{h}{i} \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \qquad \hat{p} \text{ is vector, so should } \hat{p}.$$ but \vec{p}^2 is a number, so $\hat{p}^2 = \hat{p} \cdot \hat{p} = -h^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$ $$\begin{cases} -\frac{h^2}{h}\left(\frac{s^2}{sx^4} + \frac{3^2}{sq^2} + \frac{3^2}{sx^3}\right) - \frac{ke^2}{\sqrt{x^2+q^2+q^2}} \right) \psi(\vec{x},t) = i\hbar \frac{3}{8x} \psi(\vec{x},t) \\ + \frac{3}{8x} \psi(\vec{x},t) = i\hbar \frac{3}{8x} \psi(\vec{x},t) \\ + \frac{3}{8x} \psi(\vec{x},t) = i\hbar \frac{3}{8x} \psi(\vec{x},t) \\ + \frac{3}{8x} \psi(\vec{x},t) = i\hbar \frac{3}{8x} \psi(\vec{x},t) = i\hbar \frac{3}{8x} \psi(\vec{x},t) \\ + \frac{3}{8x} \psi(\vec{x},t) = i\hbar \frac{3}{8x} \psi(\vec{x},t) + \frac$$ Have you notice something? This is the definition of eigenvalue/eigenfunction. | A 11. | | |---|-------| | $AY_a = aY_a$ | | | $\hat{A} \rightarrow \hat{H}$; $Y_a \rightarrow P_B(Z)$; $a \rightarrow \hbar \omega$, or E . | | | So the solution of Schordinger question becomes a surg
mathematical problem. | msy | | Solve eigen-function of $H(x) = E(x)$ | | | And the solution to Schordinger quation would be: | | | $Y(R,t) = f_{R}(R) e^{iEt}$; $E = \hbar\omega$. | | | So if you can solve this eigenfunction problem, you solved Schoolinger equation. | | | | | | | | | So Schordinger solved this eigentunctions, and he formed |)
 | | So Schordinger solved this eigenfunctions, and he formed many solutions (or group of solutions) | | | with $E_n \bowtie \frac{R'}{n^2}$, n is integer. | | | $\frac{1}{n^2}$ | | | So: $E_n - E_m = \hbar \omega \omega \frac{1}{\chi} = R_0 \left(\frac{1}{h^2 - \frac{1}{m^2}} \right)$ | | | | | | Reproduce the spectrum of Hydrogen Atom. | | | | | | Schoolinger solved the eigenvalues of \widehat{H} (energy operator), and the values are the same as experiment measurement of energy. | |---| | energy. | | · | | And in fact, all energy values extracted from the hydrogen spectra measurement, guals to the eigenvalues of \hat{H} . | | There's no exception. This is a one to one mapping. | | E measured (=> Eeigenvalue. | | | | People summarise postulate 4: | | The measurable value of attribute A, is the eigenvalues of operator A. | | operator A. | | It make sense | | Schondinger's contribution stopped here. | | | | Contine: From election toung's double slit experiment: | | Contine: From electron toung's double slit experiment: we know the linear combition of wave function should still be a valid wave function: | | $Y = \sum_{n=1}^{16} A_n \cdot Y_n$ Postulate 5. | | · · · · · · · · · · · · · · · · · · · | | The final postulate (which Einstein never believed) | |---| | This one is extremely difficult to understand, but let's try. | | Still Young's double Slit experiment of electrons. | | We've seen the movie, electron arrives one by one, and people measures its position. | | and people measures its position. | | So according to postularte 4, all possible results are the eigenvalue of position operator \hat{x} . | | And according to Postulate 5: all wavefunction can be expressed | | as superposition of eigenstates. $Y(x) = \frac{x}{n-1}$ an Y_n . | | So wheat is the eigenvalue and leigenfunction of \hat{x} ? | | ligenfunction is $\delta(x-x_0)$; ligenvalue is $\forall x_0.(any)$. | | Proof: $\hat{\chi} Y(x) = \chi Y(x) = \chi_0 Y(x) = (\chi - \chi_0) Y(x) = 0.$ operator Variable number | | Since x is a Variable, xo is a number, X-Xo to unless | | $X=X_0$.
So for $X\neq X_0$, $Y(X)=0$; | for X=Xo, Y(x=xo) can be aritary value. But since we need eigenfunction to be normalized: $| = \int_{-\infty}^{+\infty} \psi(x) dx = \int_{x=x_0-q}^{x=x_0+q} \psi(x) dx ; As 2 \rightarrow 0; \psi(x) \rightarrow \infty.$ So we have: the eigenfunction of \widehat{x} for eigenvalue of x_0 is: $Y(x) = \begin{cases} 0, & x \neq x_0 \\ \infty & x = x_0 \end{cases} \text{ and } \int_{-\infty}^{+\infty} Y(x) dx = 1$ This is the definition of S-function: $Y(x) = S(x-x_0)$. So $\hat{\chi}$ has eigenvalue χ_0 , eigenfunction $\delta(\chi-\chi_0)$, χ_0 can be any real number. Now let's try it on Double Slit experiment. From that experiment, we know individual electrons arrives randomly, but its probability of arriving at position x_a , is $|Y(x_0)|^2$ if $Y(x_0) = e^{ikr_1} + e^{ikr_2}$ $\Gamma_1 = \int L^2 + \left(\chi_0 - \frac{d}{2} \right)^2 \qquad ; \qquad \Gamma_2 = \int L^2 + \left(\chi_0 + \frac{d^2}{2} \right)$ Exactly the same as light. probability | Now let's combine with postulate 4 and 5. | |--| | $Y(X)$ can be expressed as supprosition of eigenstates of $\hat{X}: S(X-X_0)$ | | C-tro | | $Y(x) = \sum_{\forall x_0} \chi(x_0) \cdot \delta(x - x_0) = \int_{-\infty}^{+\infty} \chi(x_0) \delta(x - x_0) dx$ | | $= \alpha(x).$ | | | | $ \frac{1}{1} Y(x) = \begin{cases} Y(x) \cdot \delta(x - x_0) dx_0. \\ -\infty & \\ -\infty & \end{cases} $ And we know probability of measuring x , and get result x_0 is: | | And we know probability I was size X and act regult X is | | Me know probability of measuring in , and get result as is. | | $ Y(x_0) ^2$ | | | | We express Y(x) as the superposition of the eigenfunctions of x | | then when we measure it, the probability of getting to eigenvalue | | We express $Y(x)$ as the superposition of the eigenfunctions of \hat{X} , then when we measure \hat{X} , the probability of getting to eigenvalue is the amplitude square of the coefficient in from of the eigensteat | | Extend it to all operators. | | Let $\hat{\chi} \rightarrow \hat{A}$; $\delta(x-x_0) \rightarrow \forall_{a,n} : \chi_0 \rightarrow Q_n$ | | We have Postulate 6: | | When measuring A on state Y = In Yan, When Yan is the | | We have Postulate 6: When measuring A on state $Y = \Delta n Y_{a,n}$, when $Y_{a,n}$ is the $n-th$ eigenfunction of operator \widehat{A} , then the probability of getting | | ligentalne an is $ x_n ^2$. |